The spatial organization of non-homologous end joining: From bridging to end joining

نویسندگان

  • Takashi Ochi
  • Qian Wu
  • Tom L. Blundell
چکیده

Non-homologous end joining (NHEJ) repairs DNA double-strand breaks generated by DNA damage and also those occurring in V(D)J recombination in immunoglobulin and T cell receptor production in the immune system. In NHEJ DNA-PKcs assembles with Ku heterodimer on the DNA ends at double-strand breaks, in order to bring the broken ends together and to assemble other proteins, including DNA ligase IV (LigIV), required for DNA repair. Here we focus on structural aspects of the interactions of LigIV with XRCC4, XLF, Artemis and DNA involved in the bridging and end-joining steps of NHEJ. We begin with a discussion of the role of XLF, which interacts with Ku and forms a hetero-filament with XRCC4; this likely forms a scaffold bridging the DNA ends. We then review the well-defined interaction of XRCC4 with LigIV, and discuss the possibility of this complex interrupting the filament formation, so positioning the ligase at the correct positions close to the broken ends. We also describe the interactions of LigIV with Artemis, the nuclease that prepares the ends for ligation and also interacts with DNA-PK. Lastly we review the likely affects of Mendelian mutations on these multiprotein assemblies and their impacts on the form of inherited disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

A human XRCC4–XLF complex bridges DNA

DNA double-strand breaks pose a significant threat to cell survival and must be repaired. In higher eukaryotes, such damage is repaired efficiently by non-homologous end joining (NHEJ). Within this pathway, XRCC4 and XLF fulfill key roles required for end joining. Using DNA-binding and -bridging assays, combined with direct visualization, we present evidence for how XRCC4-XLF complexes robustly...

متن کامل

Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining

XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimula...

متن کامل

A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polµ and Polλ

Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3' single-stranded overhangs and trans-polymerization using one 3' end as primer and the other as template, to minimize sequence loss. In this context, we have studied the im...

متن کامل

Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or "alternative" end joining, which does not. Alternative end joining has been associated with genomic deleti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2014